Strong $I^K$-Convergence in Probabilistic Metric Spaces
Authors
Abstract:
In this paper we introduce strong $I^K$-convergence of functions which is common generalization of strong $I^*$-convergence of functions in probabilistic metric spaces. We also define and study strong $I^{K}$-limit points of functions in same space.
similar resources
Completeness in Probabilistic Metric Spaces
The idea of probabilistic metric space was introduced by Menger and he showed that probabilistic metric spaces are generalizations of metric spaces. Thus, in this paper, we prove some of the important features and theorems and conclusions that are found in metric spaces. At the beginning of this paper, the distance distribution functions are proposed. These functions are essential in defining p...
full textExpansion semigroups in probabilistic metric spaces
We present some new results on the existence and the approximationof common fixed point of expansive mappings and semigroups in probabilisticmetric spaces.
full textexpansion semigroups in probabilistic metric spaces
we present some new results on the existence and the approximationof common fixed point of expansive mappings and semigroups in probabilisticmetric spaces.
full textStrong convergence of modified noor iteration in CAT(0) spaces
We prove a strong convergence theorem for the modified Noor iterations in the framework of CAT(0) spaces. Our results extend and improve the corresponding results of X. Qin, Y. Su and M. Shang, T. H. Kim and H. K. Xu and S. Saejung and some others.
full textA note on convergence in fuzzy metric spaces
The sequential $p$-convergence in a fuzzy metric space, in the sense of George and Veeramani, was introduced by D. Mihet as a weaker concept than convergence. Here we introduce a stronger concept called $s$-convergence, and we characterize those fuzzy metric spaces in which convergent sequences are $s$-convergent. In such a case $M$ is called an $s$-fuzzy metric. If $(N_M,ast)$ is a fuzzy metri...
full textSome topological properties of fuzzy strong b-metric spaces
In this study, we investigate topological properties of fuzzy strong b-metric spaces defined in [13]. Firstly, we prove Baire's theorem for these spaces. Then we define the product of two fuzzy strong b-metric spaces defined with same continuous t-norms and show that $X_{1}times X_{2}$ is a complete fuzzy strong b-metric space if and only if $X_{1}$ and $X_{2}$ are complete fu...
full textMy Resources
Journal title
volume 17 issue 2
pages 273- 288
publication date 2022-09
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023